It appears that the repository has undergone several changes and renamings:

This commit is contained in:
2025-06-10 13:23:37 +02:00
parent a4a293a744
commit 7e4bfbd4d7
11470 changed files with 704 additions and 1206091 deletions

View File

@ -1,549 +0,0 @@
/// <reference types="node" resolution-mode="require"/>
/// <reference types="node" resolution-mode="require"/>
/// <reference types="node" resolution-mode="require"/>
/// <reference types="node" resolution-mode="require"/>
import { EventEmitter } from 'node:events';
import { StringDecoder } from 'node:string_decoder';
/**
* Same as StringDecoder, but exposing the `lastNeed` flag on the type
*/
type SD = StringDecoder & {
lastNeed: boolean;
};
export type { SD, Pipe, PipeProxyErrors };
/**
* Return true if the argument is a Minipass stream, Node stream, or something
* else that Minipass can interact with.
*/
export declare const isStream: (s: any) => s is NodeJS.WriteStream | NodeJS.ReadStream | Minipass<any, any, any> | (NodeJS.ReadStream & {
fd: number;
}) | (EventEmitter & {
pause(): any;
resume(): any;
pipe(...destArgs: any[]): any;
}) | (NodeJS.WriteStream & {
fd: number;
}) | (EventEmitter & {
end(): any;
write(chunk: any, ...args: any[]): any;
});
/**
* Return true if the argument is a valid {@link Minipass.Readable}
*/
export declare const isReadable: (s: any) => s is Minipass.Readable;
/**
* Return true if the argument is a valid {@link Minipass.Writable}
*/
export declare const isWritable: (s: any) => s is Minipass.Readable;
declare const EOF: unique symbol;
declare const MAYBE_EMIT_END: unique symbol;
declare const EMITTED_END: unique symbol;
declare const EMITTING_END: unique symbol;
declare const EMITTED_ERROR: unique symbol;
declare const CLOSED: unique symbol;
declare const READ: unique symbol;
declare const FLUSH: unique symbol;
declare const FLUSHCHUNK: unique symbol;
declare const ENCODING: unique symbol;
declare const DECODER: unique symbol;
declare const FLOWING: unique symbol;
declare const PAUSED: unique symbol;
declare const RESUME: unique symbol;
declare const BUFFER: unique symbol;
declare const PIPES: unique symbol;
declare const BUFFERLENGTH: unique symbol;
declare const BUFFERPUSH: unique symbol;
declare const BUFFERSHIFT: unique symbol;
declare const OBJECTMODE: unique symbol;
declare const DESTROYED: unique symbol;
declare const ERROR: unique symbol;
declare const EMITDATA: unique symbol;
declare const EMITEND: unique symbol;
declare const EMITEND2: unique symbol;
declare const ASYNC: unique symbol;
declare const ABORT: unique symbol;
declare const ABORTED: unique symbol;
declare const SIGNAL: unique symbol;
declare const DATALISTENERS: unique symbol;
declare const DISCARDED: unique symbol;
/**
* Options that may be passed to stream.pipe()
*/
export interface PipeOptions {
/**
* end the destination stream when the source stream ends
*/
end?: boolean;
/**
* proxy errors from the source stream to the destination stream
*/
proxyErrors?: boolean;
}
/**
* Internal class representing a pipe to a destination stream.
*
* @internal
*/
declare class Pipe<T extends unknown> {
src: Minipass<T>;
dest: Minipass<any, T>;
opts: PipeOptions;
ondrain: () => any;
constructor(src: Minipass<T>, dest: Minipass.Writable, opts: PipeOptions);
unpipe(): void;
proxyErrors(_er: any): void;
end(): void;
}
/**
* Internal class representing a pipe to a destination stream where
* errors are proxied.
*
* @internal
*/
declare class PipeProxyErrors<T> extends Pipe<T> {
unpipe(): void;
constructor(src: Minipass<T>, dest: Minipass.Writable, opts: PipeOptions);
}
export declare namespace Minipass {
/**
* Encoding used to create a stream that outputs strings rather than
* Buffer objects.
*/
export type Encoding = BufferEncoding | 'buffer' | null;
/**
* Any stream that Minipass can pipe into
*/
export type Writable = Minipass<any, any, any> | NodeJS.WriteStream | (NodeJS.WriteStream & {
fd: number;
}) | (EventEmitter & {
end(): any;
write(chunk: any, ...args: any[]): any;
});
/**
* Any stream that can be read from
*/
export type Readable = Minipass<any, any, any> | NodeJS.ReadStream | (NodeJS.ReadStream & {
fd: number;
}) | (EventEmitter & {
pause(): any;
resume(): any;
pipe(...destArgs: any[]): any;
});
/**
* Utility type that can be iterated sync or async
*/
export type DualIterable<T> = Iterable<T> & AsyncIterable<T>;
type EventArguments = Record<string | symbol, unknown[]>;
/**
* The listing of events that a Minipass class can emit.
* Extend this when extending the Minipass class, and pass as
* the third template argument. The key is the name of the event,
* and the value is the argument list.
*
* Any undeclared events will still be allowed, but the handler will get
* arguments as `unknown[]`.
*/
export interface Events<RType extends any = Buffer> extends EventArguments {
readable: [];
data: [chunk: RType];
error: [er: unknown];
abort: [reason: unknown];
drain: [];
resume: [];
end: [];
finish: [];
prefinish: [];
close: [];
[DESTROYED]: [er?: unknown];
[ERROR]: [er: unknown];
}
/**
* String or buffer-like data that can be joined and sliced
*/
export type ContiguousData = Buffer | ArrayBufferLike | ArrayBufferView | string;
export type BufferOrString = Buffer | string;
/**
* Options passed to the Minipass constructor.
*/
export type SharedOptions = {
/**
* Defer all data emission and other events until the end of the
* current tick, similar to Node core streams
*/
async?: boolean;
/**
* A signal which will abort the stream
*/
signal?: AbortSignal;
/**
* Output string encoding. Set to `null` or `'buffer'` (or omit) to
* emit Buffer objects rather than strings.
*
* Conflicts with `objectMode`
*/
encoding?: BufferEncoding | null | 'buffer';
/**
* Output data exactly as it was written, supporting non-buffer/string
* data (such as arbitrary objects, falsey values, etc.)
*
* Conflicts with `encoding`
*/
objectMode?: boolean;
};
/**
* Options for a string encoded output
*/
export type EncodingOptions = SharedOptions & {
encoding: BufferEncoding;
objectMode?: false;
};
/**
* Options for contiguous data buffer output
*/
export type BufferOptions = SharedOptions & {
encoding?: null | 'buffer';
objectMode?: false;
};
/**
* Options for objectMode arbitrary output
*/
export type ObjectModeOptions = SharedOptions & {
objectMode: true;
encoding?: null;
};
/**
* Utility type to determine allowed options based on read type
*/
export type Options<T> = ObjectModeOptions | (T extends string ? EncodingOptions : T extends Buffer ? BufferOptions : SharedOptions);
export {};
}
/**
* Main export, the Minipass class
*
* `RType` is the type of data emitted, defaults to Buffer
*
* `WType` is the type of data to be written, if RType is buffer or string,
* then any {@link Minipass.ContiguousData} is allowed.
*
* `Events` is the set of event handler signatures that this object
* will emit, see {@link Minipass.Events}
*/
export declare class Minipass<RType extends unknown = Buffer, WType extends unknown = RType extends Minipass.BufferOrString ? Minipass.ContiguousData : RType, Events extends Minipass.Events<RType> = Minipass.Events<RType>> extends EventEmitter implements Minipass.DualIterable<RType> {
[FLOWING]: boolean;
[PAUSED]: boolean;
[PIPES]: Pipe<RType>[];
[BUFFER]: RType[];
[OBJECTMODE]: boolean;
[ENCODING]: BufferEncoding | null;
[ASYNC]: boolean;
[DECODER]: SD | null;
[EOF]: boolean;
[EMITTED_END]: boolean;
[EMITTING_END]: boolean;
[CLOSED]: boolean;
[EMITTED_ERROR]: unknown;
[BUFFERLENGTH]: number;
[DESTROYED]: boolean;
[SIGNAL]?: AbortSignal;
[ABORTED]: boolean;
[DATALISTENERS]: number;
[DISCARDED]: boolean;
/**
* true if the stream can be written
*/
writable: boolean;
/**
* true if the stream can be read
*/
readable: boolean;
/**
* If `RType` is Buffer, then options do not need to be provided.
* Otherwise, an options object must be provided to specify either
* {@link Minipass.SharedOptions.objectMode} or
* {@link Minipass.SharedOptions.encoding}, as appropriate.
*/
constructor(...args: [Minipass.ObjectModeOptions] | (RType extends Buffer ? [] | [Minipass.Options<RType>] : [Minipass.Options<RType>]));
/**
* The amount of data stored in the buffer waiting to be read.
*
* For Buffer strings, this will be the total byte length.
* For string encoding streams, this will be the string character length,
* according to JavaScript's `string.length` logic.
* For objectMode streams, this is a count of the items waiting to be
* emitted.
*/
get bufferLength(): number;
/**
* The `BufferEncoding` currently in use, or `null`
*/
get encoding(): BufferEncoding | null;
/**
* @deprecated - This is a read only property
*/
set encoding(_enc: BufferEncoding | null);
/**
* @deprecated - Encoding may only be set at instantiation time
*/
setEncoding(_enc: Minipass.Encoding): void;
/**
* True if this is an objectMode stream
*/
get objectMode(): boolean;
/**
* @deprecated - This is a read-only property
*/
set objectMode(_om: boolean);
/**
* true if this is an async stream
*/
get ['async'](): boolean;
/**
* Set to true to make this stream async.
*
* Once set, it cannot be unset, as this would potentially cause incorrect
* behavior. Ie, a sync stream can be made async, but an async stream
* cannot be safely made sync.
*/
set ['async'](a: boolean);
[ABORT](): void;
/**
* True if the stream has been aborted.
*/
get aborted(): boolean;
/**
* No-op setter. Stream aborted status is set via the AbortSignal provided
* in the constructor options.
*/
set aborted(_: boolean);
/**
* Write data into the stream
*
* If the chunk written is a string, and encoding is not specified, then
* `utf8` will be assumed. If the stream encoding matches the encoding of
* a written string, and the state of the string decoder allows it, then
* the string will be passed through to either the output or the internal
* buffer without any processing. Otherwise, it will be turned into a
* Buffer object for processing into the desired encoding.
*
* If provided, `cb` function is called immediately before return for
* sync streams, or on next tick for async streams, because for this
* base class, a chunk is considered "processed" once it is accepted
* and either emitted or buffered. That is, the callback does not indicate
* that the chunk has been eventually emitted, though of course child
* classes can override this function to do whatever processing is required
* and call `super.write(...)` only once processing is completed.
*/
write(chunk: WType, cb?: () => void): boolean;
write(chunk: WType, encoding?: Minipass.Encoding, cb?: () => void): boolean;
/**
* Low-level explicit read method.
*
* In objectMode, the argument is ignored, and one item is returned if
* available.
*
* `n` is the number of bytes (or in the case of encoding streams,
* characters) to consume. If `n` is not provided, then the entire buffer
* is returned, or `null` is returned if no data is available.
*
* If `n` is greater that the amount of data in the internal buffer,
* then `null` is returned.
*/
read(n?: number | null): RType | null;
[READ](n: number | null, chunk: RType): RType;
/**
* End the stream, optionally providing a final write.
*
* See {@link Minipass#write} for argument descriptions
*/
end(cb?: () => void): this;
end(chunk: WType, cb?: () => void): this;
end(chunk: WType, encoding?: Minipass.Encoding, cb?: () => void): this;
[RESUME](): void;
/**
* Resume the stream if it is currently in a paused state
*
* If called when there are no pipe destinations or `data` event listeners,
* this will place the stream in a "discarded" state, where all data will
* be thrown away. The discarded state is removed if a pipe destination or
* data handler is added, if pause() is called, or if any synchronous or
* asynchronous iteration is started.
*/
resume(): void;
/**
* Pause the stream
*/
pause(): void;
/**
* true if the stream has been forcibly destroyed
*/
get destroyed(): boolean;
/**
* true if the stream is currently in a flowing state, meaning that
* any writes will be immediately emitted.
*/
get flowing(): boolean;
/**
* true if the stream is currently in a paused state
*/
get paused(): boolean;
[BUFFERPUSH](chunk: RType): void;
[BUFFERSHIFT](): RType;
[FLUSH](noDrain?: boolean): void;
[FLUSHCHUNK](chunk: RType): boolean;
/**
* Pipe all data emitted by this stream into the destination provided.
*
* Triggers the flow of data.
*/
pipe<W extends Minipass.Writable>(dest: W, opts?: PipeOptions): W;
/**
* Fully unhook a piped destination stream.
*
* If the destination stream was the only consumer of this stream (ie,
* there are no other piped destinations or `'data'` event listeners)
* then the flow of data will stop until there is another consumer or
* {@link Minipass#resume} is explicitly called.
*/
unpipe<W extends Minipass.Writable>(dest: W): void;
/**
* Alias for {@link Minipass#on}
*/
addListener<Event extends keyof Events>(ev: Event, handler: (...args: Events[Event]) => any): this;
/**
* Mostly identical to `EventEmitter.on`, with the following
* behavior differences to prevent data loss and unnecessary hangs:
*
* - Adding a 'data' event handler will trigger the flow of data
*
* - Adding a 'readable' event handler when there is data waiting to be read
* will cause 'readable' to be emitted immediately.
*
* - Adding an 'endish' event handler ('end', 'finish', etc.) which has
* already passed will cause the event to be emitted immediately and all
* handlers removed.
*
* - Adding an 'error' event handler after an error has been emitted will
* cause the event to be re-emitted immediately with the error previously
* raised.
*/
on<Event extends keyof Events>(ev: Event, handler: (...args: Events[Event]) => any): this;
/**
* Alias for {@link Minipass#off}
*/
removeListener<Event extends keyof Events>(ev: Event, handler: (...args: Events[Event]) => any): this;
/**
* Mostly identical to `EventEmitter.off`
*
* If a 'data' event handler is removed, and it was the last consumer
* (ie, there are no pipe destinations or other 'data' event listeners),
* then the flow of data will stop until there is another consumer or
* {@link Minipass#resume} is explicitly called.
*/
off<Event extends keyof Events>(ev: Event, handler: (...args: Events[Event]) => any): this;
/**
* Mostly identical to `EventEmitter.removeAllListeners`
*
* If all 'data' event handlers are removed, and they were the last consumer
* (ie, there are no pipe destinations), then the flow of data will stop
* until there is another consumer or {@link Minipass#resume} is explicitly
* called.
*/
removeAllListeners<Event extends keyof Events>(ev?: Event): this;
/**
* true if the 'end' event has been emitted
*/
get emittedEnd(): boolean;
[MAYBE_EMIT_END](): void;
/**
* Mostly identical to `EventEmitter.emit`, with the following
* behavior differences to prevent data loss and unnecessary hangs:
*
* If the stream has been destroyed, and the event is something other
* than 'close' or 'error', then `false` is returned and no handlers
* are called.
*
* If the event is 'end', and has already been emitted, then the event
* is ignored. If the stream is in a paused or non-flowing state, then
* the event will be deferred until data flow resumes. If the stream is
* async, then handlers will be called on the next tick rather than
* immediately.
*
* If the event is 'close', and 'end' has not yet been emitted, then
* the event will be deferred until after 'end' is emitted.
*
* If the event is 'error', and an AbortSignal was provided for the stream,
* and there are no listeners, then the event is ignored, matching the
* behavior of node core streams in the presense of an AbortSignal.
*
* If the event is 'finish' or 'prefinish', then all listeners will be
* removed after emitting the event, to prevent double-firing.
*/
emit<Event extends keyof Events>(ev: Event, ...args: Events[Event]): boolean;
[EMITDATA](data: RType): boolean;
[EMITEND](): boolean;
[EMITEND2](): boolean;
/**
* Return a Promise that resolves to an array of all emitted data once
* the stream ends.
*/
collect(): Promise<RType[] & {
dataLength: number;
}>;
/**
* Return a Promise that resolves to the concatenation of all emitted data
* once the stream ends.
*
* Not allowed on objectMode streams.
*/
concat(): Promise<RType>;
/**
* Return a void Promise that resolves once the stream ends.
*/
promise(): Promise<void>;
/**
* Asynchronous `for await of` iteration.
*
* This will continue emitting all chunks until the stream terminates.
*/
[Symbol.asyncIterator](): AsyncGenerator<RType, void, void>;
/**
* Synchronous `for of` iteration.
*
* The iteration will terminate when the internal buffer runs out, even
* if the stream has not yet terminated.
*/
[Symbol.iterator](): Generator<RType, void, void>;
/**
* Destroy a stream, preventing it from being used for any further purpose.
*
* If the stream has a `close()` method, then it will be called on
* destruction.
*
* After destruction, any attempt to write data, read data, or emit most
* events will be ignored.
*
* If an error argument is provided, then it will be emitted in an
* 'error' event.
*/
destroy(er?: unknown): this;
/**
* Alias for {@link isStream}
*
* Former export location, maintained for backwards compatibility.
*
* @deprecated
*/
static get isStream(): (s: any) => s is NodeJS.WriteStream | NodeJS.ReadStream | Minipass<any, any, any> | (NodeJS.ReadStream & {
fd: number;
}) | (EventEmitter & {
pause(): any;
resume(): any;
pipe(...destArgs: any[]): any;
}) | (NodeJS.WriteStream & {
fd: number;
}) | (EventEmitter & {
end(): any;
write(chunk: any, ...args: any[]): any;
});
}
//# sourceMappingURL=index.d.ts.map

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

View File

@ -1,3 +0,0 @@
{
"type": "module"
}